How It Works
Transform social media engagement data into predictive insights using AI-powered synthetic personas
The Pipeline
Data Input
Real User Profiles with Engagement History
Persona Generation
AI analyzes engagement patterns and creates behavioral personas
Example Analysis:
"This user clicks on automation content but ignores strategic analysis. They prefer practical tutorials over theory. Engagement peaks with AI/ML topics."
Content Testing
Each persona evaluates your content options
"I'd choose [A] - practical tools are more actionable than theory"
"[A] has code examples which I need for implementation"
Aggregated Insights
Statistical analysis + AI-generated summary
Why "Synthetic" Personas?
Traditional personas are fictional. These are data-grounded - they mirror real user behavior from actual engagement data.
How It Predicts Behavior
The AI learns from past engagement patterns (clicks vs impressions) to predict future content preferences.
Use Cases
Ad Testing
Test headline variations before spending on campaigns
Email Subject Lines
Predict which subject lines drive opens in your audience
Content Strategy
Validate content ideas before production
Technical Architecture
MCP Integration
Expose this API as tools for AI agents using the Model Context Protocol (MCP).
MCP Server Configuration
{
"mcpServers": {
"synthetic-personas": {
"url": "https://synthetic.smartabout.ai",
"tools": ["generate_personas", "query_personas"]
}
}
}
Tool: generate_personas
Generate synthetic personas from user profiles with engagement history.
{
"name": "generate_personas",
"description": "Generate synthetic personas from user profiles",
"inputSchema": {
"type": "object",
"properties": {
"profiles": {
"type": "array",
"description": "User profiles with bio and activity_log",
"items": {
"type": "object",
"properties": {
"user_id": { "type": "string" },
"bio": { "type": "string" },
"job_title": { "type": "string" },
"activity_log": { "type": "array" }
}
}
}
},
"required": ["profiles"]
}
}
Tool: query_personas
Query personas with content options to predict engagement.
{
"name": "query_personas",
"description": "Query personas with content options for A/B testing",
"inputSchema": {
"type": "object",
"properties": {
"personas": {
"type": "array",
"description": "Previously generated personas"
},
"question": {
"type": "string",
"description": "e.g., 'Which headline would you click?'"
},
"options": {
"type": "array",
"description": "Content options with id and headline",
"items": {
"type": "object",
"properties": {
"id": { "type": "string" },
"headline": { "type": "string" }
}
}
}
},
"required": ["personas", "question", "options"]
}
}
Example Agent Usage
# Agent prompt example:
"Using my audience data, generate personas and test which
headline performs better: 'Save Time with AI' vs 'Boost ROI
with Automation'. Return the winner with reasoning."
# Agent calls:
1. generate_personas(profiles=audience_data)
2. query_personas(personas=result, question="Which headline?",
options=[{id:"A", headline:"Save Time..."}, {id:"B", ...}])
3. Returns: "Option A wins 65% - audience prefers time-saving messaging"